Optimality of Poisson processes intensity learning with Gaussian processes

نویسندگان

  • Alisa Kirichenko
  • Harry van Zanten
چکیده

In this paper we provide theoretical support for the so-called “Sigmoidal Gaussian Cox Process” approach to learning the intensity of an inhomogeneous Poisson process on a ddimensional domain. This method was proposed by Adams, Murray and MacKay (ICML, 2009), who developed a tractable computational approach and showed in simulation and real data experiments that it can work quite satisfactorily. The results presented in the present paper provide theoretical underpinning of the method. In particular, we show how to tune the priors on the hyper parameters of the model in order for the procedure to automatically adapt to the degree of smoothness of the unknown intensity, and to achieve optimal convergence rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UvA-DARE (Digital Academic Repository) Optimality of Poisson Processes Intensity Learning with Gaussian Processes Kirichenko,

In this paper we provide theoretical support for the so-called “Sigmoidal Gaussian Cox Process” approach to learning the intensity of an inhomogeneous Poisson process on a ddimensional domain. This method was proposed by Adams, Murray and MacKay (ICML, 2009), who developed a tractable computational approach and showed in simulation and real data experiments that it can work quite satisfactorily...

متن کامل

Fractional Poisson Process

For almost two centuries, Poisson process with memoryless property of corresponding exponential distribution served as the simplest, and yet one of the most important stochastic models. On the other hand, there are many processes that exhibit long memory (e.g., network traffic and other complex systems). It would be useful if one could generalize the standard Poisson process to include these p...

متن کامل

Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes

Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...

متن کامل

Complete convergence of moving-average processes under negative dependence sub-Gaussian assumptions

The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.

متن کامل

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015